

Welcome to the phenotrex documentation!

Contents:

	phenotrex
	Installation

	Usage

	Installation
	Stable release

	From sources

	Usage Tutorial
	Creation of Phenotrex Input Features

	Training of Phenotrex Classifiers

	Performance Estimation of Phenotrex Classifiers

	Performance Estimation for Metagenomic Phenotrex Classifiers

	Predicting Phenotypes with Phenotrex

	Explanation of Phenotrex Predictions

	phenotrex
	phenotrex package

	Credits
	Development Lead

	Contributors

	History

Indices and tables

	Index

	Module Index

	Search Page

phenotrex

[image: PyPI]
 [https://pypi.python.org/pypi/phenotrex][image: Codecov]
 [https://codecov.io/gh/univieCUBE/phenotrex][image: Code Quality]
 [https://lgtm.com/projects/g/LokiLuciferase/phenotrex/context:python][image: Travis CI]
 [https://travis-ci.com/univieCUBE/phenotrex][image: AppVeyor CI]
 [https://ci.appveyor.com/project/VarIr/phenotrex][image: Documentation Status]
 [https://phenotrex.readthedocs.io/en/latest/?badge=latest]End-to-end Microbial Phenotypic Trait Prediction.

Installation

$ pip install phenotrex[fasta]

Usage

Phenotrex is a component of the PhenDB [https://www.phendb.org/] web server, which performs phenotypic trait prediction on
user-uploaded metagenomic bins. To try out phenotrex with PhenDB’s pre-trained and curated set of
trait models, genomes may thus simply be submitted to PhenDB [https://phen.csb.univie.ac.at/phendb/].

Basic Usage

To use a trained phenotrex model MY_TRAIT.pkl for prediction of a phenotypic trait with a
given genome genome.fna:

$ phenotrex predict --classifier MY_TRAIT.pkl genome.fna > predictions.tsv

This yields a tabular file containing a prediction regarding the presence of the trait (YES or NO),
as well as a confidence value the model ascribes to this prediction, ranging from 0.5 to 1.0.

Advanced Usage

For training, evaluation and explanation of phenotrex models on user data, please refer to the
full usage tutorial here [https://phenotrex.readthedocs.io/en/latest/usage.html].

Installation

Stable release

For a full installation of phenotrex, run this command in your terminal:

$ pip install phenotrex[fasta]

Note that this command installs large dependencies (pytorch [https://pytorch.org/], deepnog [https://github.com/univieCUBE/deepnog]) required for
transforming FASTA files into phenotrex input features at runtime.

If this capability is not needed (for example because feature files
have been pre-created),
installation size can be significantly reduced by running instead:

$ pip install phenotrex

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for phenotrex can be downloaded from the Github repo [https://github.com/univieCUBE/phenotrex].

You can either clone the public repository:

$ git clone git://github.com/univieCUBE/phenotrex

Or download the tarball [https://github.com/univieCUBE/phenotrex/tarball/master]:

$ curl -OL https://github.com/univieCUBE/phenotrex/tarball/master

Once you have a copy of the source, you can install it with:

$ make full-install

Usage Tutorial

The following tutorial illustrates training, evaluation, inference and model introspection with phenotrex
using the phenotrex command line interface. For further information on flags and parameters used
in this tutorial, please consult the relevant CLI documentation available via
phenotrex <command> --help.

To illustrate phenotrex’s capabilities, a small dataset of genome assemblies will be used.
To download all required data, run:

$ curl -OL http://fileshare.csb.univie.ac.at/phenotrex/tutorial_data.tar
$ tar -xf tutorial_data.tar
$ cd tutorial_data

To then install phenotrex, including its capability for extracting features from FASTA files,
in a new virtual environment:

$ python3 -m venv phenotrex-env
$ source ./phenotrex-env/bin/activate
$ pip install phenotrex[fasta]

Creation of Phenotrex Input Features

Phenotrex operates on presence/absence patterns of eggNOG [http://eggnog5.embl.de/] cluster IDs in the passed genome.
If a DNA FASTA file is passed to phenotrex,
Prodigal [https://github.com/hyattpd/Prodigal] is first used to find protein sequences - this step is skipped if a protein FASTA file
is passed instead. To then find eggNOG cluster IDs from protein sequences, deepnog [https://github.com/univieCUBE/deepnog] is used.
Input files to feature creation may thus be DNA or protein multi-FASTA files, which may optionally
be gzipped.

Feature creation is computationally demanding. For this reason, direct input of individual
FASTA files to phenotrex is only implemented for prediction.
For model training, evaluation (and for batch prediction), tabular files must be created from
input FASTA files representing the genotype of all input files, encoded as eggNOG cluster IDs. This
allows reuse of the created features for all training and evaluation purposes.

To create a tabular genotype file suitable for use in phenotrex training:

$ phenotrex compute-genotype \
 --out T3SS.train_eval.genotype \
 --threads 4 \
 train_eval/genomes/*.fna.gz

After some time, this will create a new tab-separated values (TSV) file T3SS.train_eval.genotype
in the current directory, of the following shape:

#feature_type:eggNOG5-tax-2
GCA_003096415.1.fna.gz COG0656 COG0661 COG3161 COG0358 ...
GCF_000006765.1.fna.gz COG0593 COG3255 COG1195 COG0187 ...
GCF_000006905.1.fna.gz COG2202 COG0169 COG0237 COG0847 ...
...

Here, all lines starting with # denote a metadata field read by phenotrex - for example the
type of features, in this case eggNOG clusters for the NCBI taxon ID 2 (Bacteria) from eggNOG version 5.
In each following line, the first field denotes the identifier of the input genome (the file name),
followed by all features found in the genome, each separated by tabs.

Note

Feature creation by phenotrex scales reasonably well with the number of threads
supplied to the compute-genotype command (--threads). However, for large sets of genomes
and when compute cluster resources are available to the user, it may be more expedient to compute
subsets of genomes in parallel on different machines, and concatenate them afterwards.

Training of Phenotrex Classifiers

To train a phenotrex classifier, two tabular input files are required: The genotype file
(created from FASTA files in the last section), containing representations of the input genomes; and
the phenotype file, containing true phenotypic trait values for each input genome on which to train and
evaluate the model. For this tutorial, we provide a phenotype file containing information on Type 3
secretion system (T3SS) presence in each of the input genomes.

The tabular phenotype file required for training and model evaluation has the following shape:

Identifier T3SS
GCF_000012905.2.fna.gz NO
GCF_000195735.1.fna.gz NO
GCF_000060345.1.fna.gz NO
GCF_000959505.1.fna.gz YES
GCF_000220235.1.fna.gz NO
GCF_000190695.1.fna.gz NO
GCF_000007605.1.fna.gz YES
GCF_000195995.1.fna.gz YES
GCF_000015365.1.fna.gz NO
GCF_000173115.1.fna.gz NO
GCF_000173095.1.fna.gz NO
GCA_003096415.1.fna.gz NO
...

The first column of the file contains identifiers (file names) mapping to those in the genotype file,
and the second column contains true phenotypic trait values. During training, the model will store the header of
column 2 as the name of the trait.

Phenotrex implements model training using two different machine learning algorithms:
XGBoost [https://xgboost.readthedocs.io/en/release_1.3.0/] (XGB) and Support Vector Machine [https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html] (SVM). For each algorithm, a number of hyperparameters
are settable for training and evaluation. Please consult the output of
phenotrex train xgb --help and phenotrex train svm --help, as well as the relevant documentation of the
underlying implementations. When no hyperparameters are selected, reasonable
(but possibly suboptimal) defaults are used.

To train an XGB classifier with the previously created genotype and the given phenotype file:

$ phenotrex train xgb \
 --genotype T3SS.train_eval.genotype \
 --phenotype train_eval/T3SS.train_eval.phenotype \
 --weights \
 --out T3SS.pkl

This will create a new model artifact T3SS.pkl in the current directory, and a
tabular file T3SS.pkl.rank representing the relative impact of input features on prediction
output as learned by the model.

Performance Estimation of Phenotrex Classifiers

The default way for phenotrex to estimate model performance (other than applying the trained model
to a held back test set) is nested cross-validation [https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html] (CV).
This allows the estimation of predictive performance for a given set of training data and hyperparameters.

To estimate performance of the model trained in the previous section, we perform a 10x/5x nested
cross-validation like so:

$ phenotrex cv xgb \
 --genotype T3SS.train_eval.genotype \
 --phenotype train_eval/T3SS.train_eval.phenotype \
 --out T3SS.misclassifications.tsv \
 --folds 5 \
 --replicates 10 \
 --threads 4

After training, predictive performance metrics averaged over outer CV folds will be printed
to stderr, and a new tabular file T3SS.misclassifications.tsv will be created. This file
contains the identifiers, phenotypic trait labels and fractions of misclassifications of the sample over
outer CV folds.

Note

The above command does not accept a trained model artifact.
Since cross-validation is performed by training several models on subsets of the given data, a final
model is not warranted here.
In general, training of the final classifier with phenotrex train {xgb,svm}
should be performed only when satisified with performance of the selected hyperparameters as given
by cross-validation.

Performance Estimation for Metagenomic Phenotrex Classifiers

For phenotrex models intended to be applied to metagenome assembled genomes, it is useful to estimate the impact
of missing and/or contaminating genomic features on the model output. In phenotrex, this is achieved
by randomly resampling the features of validation genomes to simulate incompleteness and contamination
(see Feldbauer et al. 2015 [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-16-S14-S1]). For example, to estimate performance of a model on 80% complete and
5% contaminated genomic bins, nested cross-validation is performed where from each validation sample
20% of eggNOG cluster features are randomly removed. To simulate 5% contamination conservatively, a requisite
number of eggNOG clusters are added to the genome drawn randomly only from genomes of the opposite label.
This is performed at regular intervals of completeness and contamination, resulting in a JSON file
detailing the estimated predictive performance at each step.
By default, a grid of 5% increments of completeness and contamination is evaluated.

To perform cross-validation under consideration of contamination and completeness (CCCV), perform:

$ phenotrex cccv xgb \
 --genotype T3SS.train_eval.genotype \
 --phenotype train_eval/T3SS.train_eval.phenotype \
 --out T3SS.cccv.json \
 --folds 5 \
 --replicates 10 \
 --threads 4 \
 --verb

The above command results in a file T3SS.cccv.json being created, performance metrics at each
step of the completeness/contamination grid.

Note

The default binary classification performance metric used by phenotrex is Balanced Accuracy (bACC),
which is the arithmetic mean of Sensitivity and Specificity of prediction:

\[bACC = \frac{1}{2} (\frac{TP}{TP + FN} + \frac{TN}{TN + FP})\]

This metric avoids inflating performance estimates on imbalanced datasets, and ranges from 0.5
(performance is indistinguishable from random) to 1.0 (perfect performance).

Users are encouraged to determine the contamination and completeness levels of input metagenomic bins
(e.g. using CheckM [https://github.com/Ecogenomics/CheckM/]), and critically examine the validity of predictions made by the classifier using
the estimated performance at the closest point in the completeness/contamination grid.

Predicting Phenotypes with Phenotrex

For prediction, the threshold confidence of the classifier can be specified - all predictions
with confidence below this threshold are then masked with ‘N/A’.

Note

The reported Confidence of the classifier is the model’s internal confidence in its prediction
given its input data. If the input genome is significantly incomplete or contaminated, this measure
may be misleading, as the genome could be missing vital information required for correct classification
by the model. For such cases, the external confidence measure for the given completeness/contamination level as
computed by phenotrex cccv {xgb,svm} should be considered as well.

Prediction of phenotypic traits with a pre-computed genotype file derived from genomes in the
test/genomes directory (see section Creation of Phenotrex Input Features):

$ phenotrex predict \
 --genotype test/T3SS.test.genotype \
 --classifier T3SS.pkl \
 --min_proba 0.6 \
 --verb > T3SS.test_predictions.tsv

The predict command outputs prediction results directly to stdout. When redirecting stdout to
a file, this results in a 3-column TSV file of the following shape:

Trait: T3SS
Identifier Trait present Confidence
GCF_000006645.1.fna.gz YES 0.8604
GCF_000006665.1.fna.gz YES 0.8675
GCF_000006825.1.fna.gz NO 0.6617
GCF_000007165.1.fna.gz YES 0.6771
GCF_000007205.1.fna.gz YES 0.8261
GCF_000007445.1.fna.gz YES 0.8183
...

Lines starting with # represent metadata, in this case the trait name saved in the used model artifact.

Explanation of Phenotrex Predictions

In addition to providing predicted trait labels and confidence measures,
phenotrex can provide additional explanations of its decision process.
This can help debug faulty hyperparameter configurations and help identify errors in the training data.
Model explanation is done by gauging the importance of input features identified in genomes at training and prediction time.

Feature Importance at Training Time

The relative impact of features learned by phenotrex models is output at training time when the flag
--weights is added to the phenotrex train {xgb,svm} command. The meaning of the importance
differs depending on the selected ML algorithm: when using XGB, the measure represents the overall
importance of that feature in the decision process of the model (irrespective of the final prediction),
when using SVM, the measure correlates with the probability of calling YES (positive
values) or NO (negative values) for the trait in question.

Feature Importance at Prediction Time

A second, and arguably more useful type of explanation can be computed at prediction time.
For each predicted genome, a list of features is created which, either by presence or absence,
contributed most to the prediction output for that genome.
Feature importance is represented by SHAP [https://doi.org/10.1038/s42256-019-0138-9] (SHapley Additive exPlanations) values.
The sum of SHAP values of all features considered by the model is directly related to the probability
of calling YES for the trait and genome in question.

Note

Feature explanation at prediction time is implemented by the shap package [https://github.com/slundberg/shap], which efficiently
computes the required explanations for XGB models with de facto zero overhead.
For SVM models however, this calculation can be extremely costly. We thus suggest that for
use cases where model explainability is important, XGB should be preferred over SVM.

To create feature explanations at prediction time:

$ phenotrex predict \
 --genotype test/T3SS.test.genotype \
 --classifier T3SS.pkl \
 --min_proba 0.6 \
 --out_explain_summary T3SS.expl_summary.tsv \
 --out_explain_per_sample T3SS.expl_per_sample.tsv \
 --n_max_explained_features 10 \
 --verb > T3SS.test_predictions.tsv

In addition to the original output file containing predictions, two additional files have been created:

	
	T3SS.expl_per_sample.tsv
	This file contains for each predicted genome, the features which had the highest impact on the
model output, as well as the sign of that impact.

rank Sample Feature Feature Presence SHAP Value (class=YES) Feature Annotation
...
0 GCF_000006825.1.fna.gz COG4789 0.0 -0.46379 Type iii secretion
1 GCF_000006825.1.fna.gz COG1025 0.0 -0.19678 Belongs to the peptidase M16 family
2 GCF_000006825.1.fna.gz COG0814 1.0 0.16128 amino acid
3 GCF_000006825.1.fna.gz COG1330 1.0 0.15993 A helicase nuclease that prepares dsDNA breaks (DSB)...
4 GCF_000006825.1.fna.gz COG1459 1.0 0.14634 type II secretion system
5 GCF_000006825.1.fna.gz COG1450 0.0 -0.14371 Type ii and iii secretion system protein
...

For example, for the genome GCF_000006825.1.fna.gz, we see that the absence of
COG4789 is the single most impactful contribution to the prediction output towards the
(correct) prediction NO. We can immediately identify another secretory system component
absent from the genome (COG1450) which contributes to this prediction output. However, as
the used model was trained on a small toy dataset, the presence of COG0814
with the somewhat unhelpful annotation “amino acid” and other features make significant
contributions towards flipping the prediction to YES, leading ultimately to a correct
output but with a low confidence of 0.66.

	
	T3SS.expl_summary.tsv
	This file contains the overall highest impact features, averaged over all SHAP contributions in
all predicted genomes. For each feature, the average SHAP value change upon presence or absence
of the feature is given, as well as the number of samples in which the feature was present and
absent.

Feature Mean SHAP If Present Mean SHAP If Absent N(present) N(absent) Feature Annotation
COG4789 0.69559 -0.48636 29 162 Type iii secretion
COG1025 0.26914 -0.17944 46 145 Belongs to the peptidase M16 family
COG1330 0.10883 -0.12163 72 119 A helicase nuclease that prepares dsDNA breaks (DSB)...
COG1929 0.22469 -0.08981 37 154 Belongs to the glycerate kinase type-1 family
COG0833 0.20413 -0.08887 38 153 amino acid
COG0814 0.13396 -0.07835 60 131 amino acid
COG3835 0.18331 -0.05811 38 153 regulator
COG1459 0.11474 -0.05503 73 118 type II secretion system
COG1450 0.03356 -0.10312 107 84 Type ii and iii secretion system protein

phenotrex

	phenotrex package
	Subpackages
	phenotrex.cli package
	Submodules

	phenotrex.cli.cccv module

	phenotrex.cli.clf_opt module

	phenotrex.cli.compute_genotype module

	phenotrex.cli.cv module

	phenotrex.cli.generic_func module

	phenotrex.cli.generic_opt module

	phenotrex.cli.get_weights module

	phenotrex.cli.main module

	phenotrex.cli.plot module

	phenotrex.cli.predict module

	phenotrex.cli.train module

	Module contents

	phenotrex.io package
	Submodules

	phenotrex.io.flat module

	phenotrex.io.serialization module

	Module contents

	phenotrex.ml package
	Subpackages

	Submodules

	phenotrex.ml.cccv module

	phenotrex.ml.feature_select module

	phenotrex.ml.trex_classifier module

	phenotrex.ml.vectorizer module

	Module contents

	phenotrex.structure package
	Submodules

	phenotrex.structure.records module

	Module contents

	phenotrex.transforms package
	Submodules

	phenotrex.transforms.annotation module

	phenotrex.transforms.resampling module

	Module contents

	phenotrex.util package
	Submodules

	phenotrex.util.helpers module

	phenotrex.util.logging module

	phenotrex.util.plotting module

	phenotrex.util.taxonomy module

	Module contents

	Module contents

phenotrex package

Subpackages

	phenotrex.cli package
	Submodules

	phenotrex.cli.cccv module

	phenotrex.cli.clf_opt module

	phenotrex.cli.compute_genotype module

	phenotrex.cli.cv module

	phenotrex.cli.generic_func module

	phenotrex.cli.generic_opt module

	phenotrex.cli.get_weights module

	phenotrex.cli.main module

	phenotrex.cli.plot module

	phenotrex.cli.predict module

	phenotrex.cli.train module

	Module contents

	phenotrex.io package
	Submodules

	phenotrex.io.flat module

	phenotrex.io.serialization module

	Module contents

	phenotrex.ml package
	Subpackages
	phenotrex.ml.clf package
	Submodules

	phenotrex.ml.clf.svm module

	phenotrex.ml.clf.xgbm module

	Module contents

	Submodules

	phenotrex.ml.cccv module

	phenotrex.ml.feature_select module

	phenotrex.ml.trex_classifier module

	phenotrex.ml.vectorizer module

	Module contents

	phenotrex.structure package
	Submodules

	phenotrex.structure.records module

	Module contents

	phenotrex.transforms package
	Submodules

	phenotrex.transforms.annotation module

	phenotrex.transforms.resampling module

	Module contents

	phenotrex.util package
	Submodules

	phenotrex.util.helpers module

	phenotrex.util.logging module

	phenotrex.util.plotting module

	phenotrex.util.taxonomy module

	Module contents

Module contents

Top-level package for phenotrex.

phenotrex.cli package

Submodules

phenotrex.cli.cccv module

phenotrex.cli.clf_opt module

phenotrex.cli.compute_genotype module

phenotrex.cli.cv module

phenotrex.cli.generic_func module

phenotrex.cli.generic_opt module

phenotrex.cli.get_weights module

phenotrex.cli.main module

phenotrex.cli.plot module

phenotrex.cli.predict module

phenotrex.cli.train module

Module contents

phenotrex.io package

Submodules

phenotrex.io.flat module

phenotrex.io.serialization module

Module contents

phenotrex.ml package

Subpackages

	phenotrex.ml.clf package
	Submodules

	phenotrex.ml.clf.svm module

	phenotrex.ml.clf.xgbm module

	Module contents

Submodules

phenotrex.ml.cccv module

phenotrex.ml.feature_select module

phenotrex.ml.trex_classifier module

phenotrex.ml.vectorizer module

Module contents

phenotrex.ml.clf package

Submodules

phenotrex.ml.clf.svm module

phenotrex.ml.clf.xgbm module

Module contents

phenotrex.structure package

Submodules

phenotrex.structure.records module

	
class phenotrex.structure.records.GenotypeRecord(identifier: str, feature_type: str, features: List[str])

	Bases: object

Genomic features of a sample referenced by identifier.

	
feature_type: str

	

	
features: List[str]

	

	
identifier: str

	

	
class phenotrex.structure.records.GroupRecord(identifier: str, group_name: Optional[str], group_id: Optional[int])

	Bases: object

Group label of sample identifier.
Notes
—–
Useful for leave-one-group-out cross-validation (LOGO-CV),
for example, to take taxonomy into account.

	
group_id: Optional[int]

	

	
group_name: Optional[str]

	

	
identifier: str

	

	
class phenotrex.structure.records.PhenotypeRecord(identifier: str, trait_name: str, trait_sign: int)

	Bases: object

Ground truth labels of sample identifier,
indicating presence/absence of trait trait_name:

	0 if trait is absent

	1 if trait is present

	
identifier: str

	

	
trait_name: str

	

	
trait_sign: int

	

	
class phenotrex.structure.records.TrainingRecord(identifier: str, group_name: Optional[str], group_id: Optional[int], trait_name: str, trait_sign: int, feature_type: str, features: List[str])

	Bases: phenotrex.structure.records.GenotypeRecord, phenotrex.structure.records.PhenotypeRecord, phenotrex.structure.records.GroupRecord

Sample containing Genotype-, Phenotype- and GroupRecords,
suitable as machine learning input for a single observation.

	
feature_type: str

	

	
features: List[str]

	

	
identifier: str

	

Module contents

phenotrex.transforms package

Submodules

phenotrex.transforms.annotation module

phenotrex.transforms.resampling module

	
class phenotrex.transforms.resampling.TrainingRecordResampler(random_state: Optional[float] = None, verb: bool = False)

	Bases: object

Instantiates an object which can generate versions of a TrainingRecord
resampled to defined completeness and contamination levels.
Requires prior fitting with full List[TrainingRecord]
to get sources of contamination for both classes.

	Parameters

	
	random_state – Randomness seed to use while resampling

	verb – Toggle verbosity

	
fit(records: List[phenotrex.structure.records.TrainingRecord])

	Fit TrainingRecordResampler on full TrainingRecord list
to determine set of positive and negative features for contamination resampling.

	Parameters

	records – the full List[TrainingRecord] on which ml training will commence.

	Returns

	True if fitting was performed, else False.

	
get_resampled(record: phenotrex.structure.records.TrainingRecord, comple: float = 1.0, conta: float = 0.0) → phenotrex.structure.records.TrainingRecord

	Resample a TrainingRecord to defined completeness and contamination levels.
Comple=1, Conta=1 will double set size.

	Parameters

	
	comple – completeness of returned TrainingRecord features. Range: 0 - 1

	conta – contamination of returned TrainingRecord features. Range: 0 - 1

	record – the input TrainingRecord

	Returns

	a resampled TrainingRecord.

Module contents

	
phenotrex.transforms.fastas_to_grs(*args, **kwargs)

	

phenotrex.util package

Submodules

phenotrex.util.helpers module

	
phenotrex.util.helpers.fail_missing_dependency(*args, **kwargs)

	

	
phenotrex.util.helpers.get_groups(records: List[phenotrex.structure.records.TrainingRecord]) → numpy.ndarray

	Get groups from list of TrainingRecords

	Parameters

	records –

	Returns

	list for groups

	
phenotrex.util.helpers.get_x_y_tn_ft(records: List[phenotrex.structure.records.TrainingRecord]) → Tuple[numpy.ndarray, numpy.ndarray, str, str]

	Get separate X and y from list of TrainingRecord.
Also infer trait name from first TrainingRecord.

	Parameters

	records – a List[TrainingRecord]

	Returns

	separate lists of features and targets, the trait name and the feature type

phenotrex.util.logging module

	
phenotrex.util.logging.get_logger(initname, verb=False)

	This function provides a logger to all scripts used in this project.

	Parameters

	
	initname – The name of the logger to show up in log.

	verb – Toggle verbosity

	Returns

	the finished Logger object.

phenotrex.util.plotting module

phenotrex.util.taxonomy module

Module contents

Credits

Development Lead

	Lukas Lüftinger <lukas.lueftinger@outlook.com>

Contributors

	Patrick Hyden <hydenp89@univie.ac.at>

	Roman Feldbauer <roman.feldbauer@univie.ac.at>

History

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 phenotrex	

 	
 	
 phenotrex.cli	

 	
 	
 phenotrex.ml.clf	

 	
 	
 phenotrex.structure	

 	
 	
 phenotrex.structure.records	

 	
 	
 phenotrex.transforms	

 	
 	
 phenotrex.transforms.resampling	

 	
 	
 phenotrex.util	

 	
 	
 phenotrex.util.helpers	

 	
 	
 phenotrex.util.logging	

Index

 F
 | G
 | I
 | M
 | P
 | T

F

 	
 	fail_missing_dependency() (in module phenotrex.util.helpers)

 	fastas_to_grs() (in module phenotrex.transforms)

 	feature_type (phenotrex.structure.records.GenotypeRecord attribute)

 	(phenotrex.structure.records.TrainingRecord attribute)

 	
 	features (phenotrex.structure.records.GenotypeRecord attribute)

 	(phenotrex.structure.records.TrainingRecord attribute)

 	fit() (phenotrex.transforms.resampling.TrainingRecordResampler method)

G

 	
 	GenotypeRecord (class in phenotrex.structure.records)

 	get_groups() (in module phenotrex.util.helpers)

 	get_logger() (in module phenotrex.util.logging)

 	get_resampled() (phenotrex.transforms.resampling.TrainingRecordResampler method)

 	
 	get_x_y_tn_ft() (in module phenotrex.util.helpers)

 	group_id (phenotrex.structure.records.GroupRecord attribute)

 	group_name (phenotrex.structure.records.GroupRecord attribute)

 	GroupRecord (class in phenotrex.structure.records)

I

 	
 	identifier (phenotrex.structure.records.GenotypeRecord attribute)

 	(phenotrex.structure.records.GroupRecord attribute)

 	(phenotrex.structure.records.PhenotypeRecord attribute)

 	(phenotrex.structure.records.TrainingRecord attribute)

M

 	
 	
 module

 	phenotrex

 	phenotrex.cli

 	phenotrex.ml.clf

 	phenotrex.structure

 	phenotrex.structure.records

 	phenotrex.transforms

 	phenotrex.transforms.resampling

 	phenotrex.util

 	phenotrex.util.helpers

 	phenotrex.util.logging

P

 	
 	
 phenotrex

 	module

 	
 phenotrex.cli

 	module

 	
 phenotrex.ml.clf

 	module

 	
 phenotrex.structure

 	module

 	
 phenotrex.structure.records

 	module

 	
 	
 phenotrex.transforms

 	module

 	
 phenotrex.transforms.resampling

 	module

 	
 phenotrex.util

 	module

 	
 phenotrex.util.helpers

 	module

 	
 phenotrex.util.logging

 	module

 	PhenotypeRecord (class in phenotrex.structure.records)

T

 	
 	TrainingRecord (class in phenotrex.structure.records)

 	TrainingRecordResampler (class in phenotrex.transforms.resampling)

 	
 	trait_name (phenotrex.structure.records.PhenotypeRecord attribute)

 	trait_sign (phenotrex.structure.records.PhenotypeRecord attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to the phenotrex documentation!

 		
 phenotrex

 		
 Installation

 		
 Usage

 		
 Basic Usage

 		
 Advanced Usage

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage Tutorial

 		
 Creation of Phenotrex Input Features

 		
 Training of Phenotrex Classifiers

 		
 Performance Estimation of Phenotrex Classifiers

 		
 Performance Estimation for Metagenomic Phenotrex Classifiers

 		
 Predicting Phenotypes with Phenotrex

 		
 Explanation of Phenotrex Predictions

 		
 Feature Importance at Training Time

 		
 Feature Importance at Prediction Time

 		
 phenotrex

 		
 phenotrex package

 		
 Subpackages

 		
 Module contents

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

_static/plus.png

_static/file.png

_static/minus.png

